

Mendell Primary School Aspire Challenge Achieve

Medium Term Plan Design Technology

Year Group: 6	Term: Autumr #2 202	J	Subject l Catherine O'Neill Ec	lwards Pul	alleys/(esign, corpor	w: Mechanical Systems; Gears make and evaluate a vehicle rating gears or pulleys for children tion class	to: - Understand and - Use tolls such as	By the end of this unit chil use a gear system s bench hook and saw s electrical system in to th	safely
Links to other learning: Maths Ratio	•Y2 Y5 axles that are fixe • Y4 electrica and compon • Y1,3,5 und and stiffen s • Experience techniques w	Prior Learning: , axle holders and wheels d or free moving. al circuits, simple switches ents (DT& science) erstand how to strengthen tructures. of cutting and joining vith a range of materials rd, plastic and wood.	Future Learning:	High Qual Text: Get in Geo Sholly Fisa	ility ear sch	Risk Assessment: Electrical circuits. Friction generat Pupils should be taught to work s equipment, materials, components appropriate to the task e.g. childr how to use bench hooks and saws safely. Revisit safety usage. Perso assessments should be carried out this project.	afely, using tools, and techniques en have been taught and glue guns nalised class risk	Teacher CPD: Please project on a page sheets end of this plan prior to https://www.youtube.com/watch?v=3 CPD for working out geopulleys watch: https://www.youtube.com/watch?v=r Exploded diagrams: https://www.data.org.uk/faq/how-shediagrams-to-children-in-ks2/	attached at the teaching. 3LssCrLKeXU ar ratios. For 3Ru1zZjvug
Learning I	ntention			esson Outlin	<u>Resources</u>	<u>Vocabulary</u>	Lowest 20% Adaptations		
mechani	ical and il systems input, and an	(Key Questions in colour) This is a DT lesson. In DT we design and make to solve problems. The skills we will be using this lesson are researching existing products to find out about gears and pulleys Investigative and Evaluative Activities (IEAs) • Investigate, analyse and evaluate existing everyday products and existing or pre-made toys that incorporate gear or pulley systems. Use videos and photographs of products that cannot be explored through first-hand experience. • Use observational drawings and questions to develop understanding of each product in the collection. Investigate using the following prompt questions: How innovative is the product? What design decisions have been made? What type of movement can be seen? What types of mechanical components are used and where are they positioned? What are the input, process and output of the system? How well does the product work? Why have the materials and components been chosen? How well has it been designed? How well has it been made? https://www.youtube.com/watch?v=r3Ru1zZjvug Watch this video for explanation on how pulleys works and link to real life examples of pulleys - Record learning via sketches and notes in book					existing everyday products and toys that use gear or pulley systems videos and photographs or products that's use gear and pulley systems	Mechanism gear Innovative pulley Design Input Output Movement Product Materials drive belt rotation spindle driver follower ratio transmit axle motor circuit switch circuit diagram	

2	 Understand that 	This is a DT lesson. In DT we design and make to solve problems. The skills we will be using this lesson are	Pulley construction	Pulley speed						
	mechanical and	investigating how gears and pulleys work	kits	Rotation Gear ratio						
	electrical systems	Focused Tasks (FTs) liaise with SWHS to share resources Aoife Taylor taylora@southwirral.wirral.sch.uk		Circuit						
	have an input,	• Using a construction kit, investigate combinations of two different sized pulleys to learn about direction	Gear construction kits	Gear up Gear down						
	process and an	and speed of rotation.		Driver Driven						
	output.	How many times does the smaller pulley turn each time the larger pulley turns once?		Turn Anticlockwise						
	• Understand how	Do the pulleys move in the same direction?		Clockwise Reverse						
	gears and pulleys	How can you reverse the direction of rotation?		drive belt spindle						
	can be used to	AND		follower transmit						
	speed up, slow	· Using a construction kit, explore combinations of two different size gears meshed together. Investigate the		axle motor						
	down or change	direction and speed of rotation focusing on		circuit switch						
	the direction of	How does the size of the driver gear affects the speed of the follower gear?		circuit diagram						
	movement.	Can you use the number of teeth on each gear to decide upon the gear ratios? e.g. 10 tooth driver gear								
		meshed with a 20 tooth follower gear produces a ratio of 2:1								
		https://www.youtube.com/watch?v=3LssCrLKeXU								
		AND								
		Build a working circuit that incorporates a battery, a motor and a handmade switch, such as a reversing								
		switch. Demonstrate the accurate use of tools and equipment including cutting and stripping wire, and								
		making secure electrical connections. Remind children about the dangers of mains electricity. Draw a								
		pictorial representation of the circuit and draw a circuit diagram using correct symbols. What are the								
		benefits of each type of diagram?								
3	Children could rese	research and, if possible, visit engineering and manufacturing companies that are relevant to the product they are designing and making e.g. Jaguar Land Rover — Halewood								
		.guarlandrover.com/jlr-xi-en/servlet/SmartForm.html?formCode=jlr-kmi-xi-en	3 3 3 3	J						
	or Vauxhall — Elles									
4	• Generate ideas	This is a DT lesson. In DT we design and make to solve problems. The skill we will be using this lesson is designing	Sketch	annotated drawings,						
	by carrying out	Design, Make and Evaluate Assignment (DMEA)	books/sketching paper	exploded diagrams						
	research	· Share design brief with class: Design, make and evaluate a fairground ride or vehicle incorporating gears	DT books	mechanical system,						
	• Develop design	or pulleys for children in reception class. Identify purpose, product, user. Record in books.	batteries, battery	electrical system, input,						
	specification	· Children generate innovative ideas by carrying out research including surveys, interviews and	holders, wires,	process, output						
	· Develop ideas	questionnaires and develop a design specification/criteria for their product, carefully considering the	crocodile clips, motors,	design decisions,						
	through	purpose and intended user for their product. Plan what questions to ask and what information is needed to	switches, aluminium	functionality, innovation,						
	discussion,	then develop design criteria.	foil, paper fasteners,	authentic, user, purpose,						
	annotated	Carry out research with intended users (reception children) and develop design criteria. Record in books.	paper clips, card,	design specification,						
	drawings,	Example design criteria: 1) Must be safe with components hidden 2) mechanisms and/or electrics must	motors, motor stands,	design brief						
	exploded	work 3) must be sturdy so it can withstand being played with 4) must be finished with Peppa Pig design 4)	dowel, paper sticks							
	drawings	• Communicate ideas and design development in books through detailed, annotated drawings from	consumable and							
	J	different views and/or exploded diagrams. The drawings should indicate the design decisions made,	construction kit							
		including the location of the mechanical and/ or electrical components, how they work as a system with an	pulleys or gears of							
		input, process and output, and the appearance and finishing techniques for the product.	different sizes, elastic							
		- Children choose final design and clearly record in books	bands							
5	- I can write a	This is a DT lesson. In DT we design and make to solve problems. The skill we will be using this lesson is planning	junior hacksaws, glass							
-	production plan with	• revisit safety guidance on how to use various tools correctly: glue gun, clamp, junior hack saw, bench	paper, G-clamps,							
	lists of tools, equipment and	hooks etc	bench hooks, hand							
	materials.	- Produce detailed step-by-step plans and lists of tools, equipment and materials needed, record in books.	drill, automatic wire							
	\cdot I can select from and	Children also note down safety quidance. If appropriate, allocate tasks within a team. Encourage and	strippers							
	use a range of tools	quide children to work within the constraints of time, resources and cost.	PVA glue, sticky pads,							
i .	and equipment to									
	make products that		masking tape, dowel,							

that are accurately assembled and well finished.	• Make high quality products, applying knowledge, understanding and skills from IEAs and FTs. Children should use a range of decorative finishing techniques to ensure a well-finished final product that matches the intended user and purpose.	double-sided tape, card triangles, square section wood, card, corrugated plastic, finishing media		
6 Compare final product to design specification. • Test products with intended user and critically evaluate the quality of the design, manufacture, functionality and fitness for purpose.	This is a DT lesson. In DT we design and make to solve problems. The skill we will be using this lesson is evaluating Children complete evaluation of product by themselves, with partner and with their users: Consider the following questions. Children record evaluations in their books including drawings where appropriate. Did you make your product as planned? Does your design work? If not, do you know why? Did you have to change anything about the way you made your product? Does your product look how you intended? What was the best feature? What could be better? How would you adapt your design next time? How many stars out of 5 would you give your product and why? What was that the most difficult thing about the project? What have you learned? How can what you have learned in this project help you as an adult? Does your product meet all your design criteria? What was the feedback from the user? Children take photograph of the user with the product and put in books	Completed models Time with buddies Books Prompt questions on board or printed up to aid discussion and reflection	Evaluate assess Design criteria Change Improve	