Mendell Primary School
 Aspire Challenge Achieve
 Medium Term Plan Science

Year Group: 2	Term: Autumn Aut 2	Teacher: Sarah Bride	Subject lead: Sarah Bride	Overview: Everyday Materials: - Identify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses. - Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching.		Key End Points: $\mathbf{B y}$ the end of this unit children will be able to: Talk about and describe different objects/materials. Talk about the properties of everyday objects that we use. Understand different materials have different properties. Talk about the suitability of materials for different objects. Explore changing materials.		
Common Misconceptions: Some children may think: - only fabrics are materials - only building materials are materials - only writing materials are materials - the word rock describes an object rather than a material - solid is another word for hard.		Unit key Vocabulary: Names of materials - wood, metal, plastic, glass, brick, rock, paper, cardboard Properties of materials - opaque, transparent and translucent, reflective, non-reflective, flexible, rigid shape, push/pushing, pull/pulling, twist/twisting, squash/squashing, bend/bending, stretch/stretching						
Links to other learning: Design technology, Art.	Prior Learning Distinguish between from which it is mad materials) - Identify and name materials, including water, and rock. (Y - Describe the simple variety of everyday materials) - Compare and group everyday materials physical properties.	Future Learning: Compare and group together different kinds of rocks on the basis of their appearance and simple physical properties. (Y3 - Rocks) - Notice that some forces need contact between two objects, but magnetic forces can act at a distance. (Y3 - Forces and magnets) - Compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets. (Y5-Properties and changes of materials) - Give reasons, based on evidence from comparative and fair tests, for the particular uses of everyday materials, including metals, wood and plastic. (Y5 - Properties and changes of materials)		High Quality Text: The Three Little Pigs and The Three Little Wolves and the Big Bad Pig, Michael Rosen's poem Woolly Saucepan Scientist to study: John Dunlop	Risk Assessment:		Teacher CPD: ASE plan exemplification Glory. Reach out CPD https://www.reachoutced.com/ sign up for free.	
Learning Intention	Real Life Links		Lesson Outline (Key Questions in colour)			Resources	Vocabulary	$\begin{gathered} \frac{\text { Lowest }}{20 \%} \\ \text { Addaptation } \end{gathered}$

Pre assessment task: What do we know about materials from last year? Encourage children to explain what a material is and give common examples - stretch children to consider properties of materials they can recall. record on working wall and return to this in lesson 6 to add what they now know.

Explorify: Odd One Out - fascinating forks https://explorify.uk/en/activities/odd-one-out/fascinating-forks - assess do children discuss the different materials used?

Big Question: How can we sort materials according to their properties?
Activity: Identifying common materials
Children work in small groups of no more than four. Give each group samples of wood, metal, hard plastic, glass, brick, rock, paper, cardboard, rubber and different fabrics. Allow them time to explore the different materials.
The things in front of you are all examples of different materials. Everything in our world is made out of different kinds of materials.
In their groups, children identify as many different materials as they can. Share their ideas and make a class list
Play a game of 'Altogether, Show Me'. Ask children, on the count of three, to lift up a named material from those in their collection. (Include use of the term 'fabric'.)
Children go on different hunts in the classroom finding objects made entirely out of one material, e.g. rubber (an eraser) or hard plastic (a ruler). They then find objects made out of a combination of more than one material, e.g. plastic and metal (a pencil sharpener) or glass, plastic and metal (a computer)

Ask children to name the different materials in the objects made out of more than one material. They could label these with sticky notes.

Add some additional materials to the samples the groups have. This could include different types of wood, metal, card and fabric
Ask the question how can we sort these objects into two groups? Allow the children time to discuss and explore together in groups. The children will probably sort into soft and hard. Model flexible and rigid
E. g

Words of the week; Introduce the vocabulary: transparent, translucent and opaque. https://www.youtube.com/watch?v=P6Uihn8V3h4
Share the Year 2 Materials key vocabulary list and allow the children to assess which words they are familiar with and can give a definition (colour these green) words they have heard of before but are unsure of their definition (colour orange) and words they haven't heard of before (colour red). Take time to discuss and visually model the vocabulary if possible to sort the children's independent sorting.

Now stretch the children to sort their materials into categories of their choosing. Share the ways each group has classified the materials. Ask children to find as many other ways of sorting the materials into groups as they can. Use sorting hoops and labels, provide groups with paper speech bubbles for them to record their thoughts e.g. we have sorted wood, stone, glass and metal together because they are rigid and wool, plasticine, newspaper are flexible.

Ask questions about the similarities and differences between different materials, e.g. Which two materials do you think are most similar? Why? Hold up a piece of metal and ask children to observe it closely. Choose children to share their observations about the properties of the metal (e.g. 'shiny' 'cold', 'hard', 'strong', 'flexible', 'silver', opaque).

YR1: Properties hard, soft, stretchy, stiff, bendy, floppy, waterproof, absorbent, breaks/tears, rough, smooth, shiny, dull, seethrough, not see-through

YR2: Properties opaque, transparent and translucent, reflective, nonreflective, flexible, rigid shape

		In pairs, ask children to choose one of the materials you have given them and list as many of its properties as they can. Select pairs to share their lists of properties with the rest of the class, without saying which material it is. Can the other children guess which material it is? Ask them to think first and then lift up the material when they think they have identified it.			
2	L.I. I can explain why objects are made from certain materials.	This is a Science lesson. In Science, we study nature and the behaviour of natural things. The skill we will be using this lesson is making observations. Word of the week: recap flexible and rigid. Recap of prior learning: What natural materials can you name? What does opaque mean? Big Question: Why do we make things out of certain materials? Play true or false - provide each table with one material and a list of statements about those materials, challenge the children to sort the statements into true and false. Each group reports back and compares answers together. Use the story three little pigs as lesson stimulus - record pupil voice on working wall. Ask children to call out all the different materials they can see around the classroom. Ask them to state why they think different objects are made from different materials (e.g. 'A chair is made from plastic because plastic is strong' Windows are made from glass because it is transparent). Give children samples of wood, different metals, plastic, glass, brick, rock, paper, tissue paper, cardboard, rubber, different fabrics, catalogues, magazines and forks made out of plastic, metal and wood. Ask them to identify pairs they think are similar and why. Ensure children state what the similar properties are (e.g. 'Wood and rock are similar because they are both hard') and record their ideas on a flipchart. Ask children questions about why objects are not made out of particular materials. (E.g. Why is a toy for cuddling in bed not made from glass? Why are wellington boots not made from tissue paper?) Use Michael Rosen's poem - Woolly Saucepan as a stimulus. What materials can you children spot in the poem? - use this to ensure there are no misconceptions at this stage about object over material. Has the person asked for the right material for each object? How do you know? Can you help him sort out his list of objects and which material he would like them made from? E.g. wooden chair, glass window. Why is our list more suitable? - reinforce previous learning about suitability of materials for certain objects. Show children the 'what would happen if' PowerPoint examining the pictures of objects made from very unsuitable materials. Ask pairs to discuss what would happen if the objects were made of the suggested materials. Take some suggestions before sharing the answer. Working in small groups, children list some unsuitable materials for some of the objects they use in the classroom (e.g. an eraser made from metal or a pencil made from fabric).	True or false statements samples of wood, different metals, plastic, glass, brick, rock, paper, tissue paper, cardboard, rubber, different fabrics, catalogues, magazines and forks made out of plastic, metal and wood. What would happen if... PowerPoint. Copy of poem for pairs.	wood, metal, plastic, glass, brick, rock, paper, cardboard reflective, nonreflective, flexible, rigid shape	

		In the same groups, ask children to generate their own "What would happen if ...?" questions similar to those on the PowerPoint. Groups share some of these questions with the other children in the class, discussing their answers. Exit pass; play properties snap, children have cards with different materials on when two materials have the same property e.g rigid it's a snap. Woolly Saucepan Could I have a woolly saucepan a metal jumper a glass chair and a wooden window-pane please? Er-sorry - I mean a woolly chair a glass jumper a wooden saucepan and a metal window-pane please? Er-sorry - I mean Oh - blow it! You know what I mean, don't you?			
3	L.I. I can explain why objects are made from certain materials.	This is a Science lesson. In Science, we study nature and the behaviour of natural things. The skill we will be using this lesson is asking questions and making observations. Recap of prior learning: What soft materials can you name? What does transparent mean? Recap different properties of materials taught in the previous lesson. Hold up a materials and ask the children to name its properties. Explorify Odd one out - fit for purpose. https://explorify.uk/en/activities/odd-one-out/fit-for-purpose Big Question: Why do we make things out of certain materials? Play what's my material, provide pairs with the materials sheet and the teacher describes a material using it properties, allow children time to discuss and select a material form the sheet. Watch https://www.bbc.co.uk/bitesize/topics/zrssgk7/articles/z9pgcdm Which materials do we use? This interactive looks at how the properties of the materials make them suitable for their job. Discuss key vocabulary - flexible, bendy, waterproof, transparent. Show the children a teddy and ask: What materials are used to make the teddy? - Why? Encourage the children to provide answers similar to the interactive activity e.g. fur so it is soft when you cuddle it. Wool inside so you can squeeze it. Share and discuss STEM three little pigs unusual use PowerPoint to spark a conversation on materials used in unusual but suitable ways.	https://expl orify.uk/en/ activities/od d-one-out/fit-forpurpose What's my material? sheet https://ww w.bbc.co.uk \|bitesize/top ics/zrssgk71 articles/z9p gcdm Which materials do we use? Stem three little pigs unusual use PowerPoint	flexible, bendy, waterproof, see through/ transparent.	

		Give each table a picture of an useful to make the object out of than others. - for any groups who example below: \square Oral evidence Teacher observations During the class discussion, Glory used a wide range of words to describe the properties of materials, including transparent and opaque. The worksheet did not prompt the children to think about the properties of the materials used for each object and therefore did not capture evidence of this learning effectively. Exit Pass: children choose an	al object if poss could be matche gling provide the d about objects in eet. Idence of Learn 25.09.15 LO: To identify materi the cards (car	and a lis plastic, with som classroom mples of at objects a Material Wood Plas ti metal Fabric ala name diff	f materials cut up tal. Encourage th y words to spar hat they were made de out of. nt materials) into	ask the children to think about which material would be to talk about why some materials are more suitable ion. Children draw and complete their own table see ir properties. The children were then nd unsuitable. Suitable un suitable - sorting		
4	L.I. I can investigat e which material is most absorben t.	This is a Science lesson. In a test and communicating Big Question; which mater Recap of prior learning: What can be made from pla What does translucent me Give each child or pair of child and the other should be almost Ask children to pour the water vanished.) Where do you thi Recap - do children recall the Wet your hands and dry them towel. Why? (The paper towel Ask children to empty the insta been absorbed by the instant s	study nature t suitable for arent, 25 ml pla (Don't tell child der and watch has gone? Wh word absorben paper towel. Sh Can you nam the paper towel	the beha sorbing cups and that the carefully. something fom Year the child ther absor Draw their	our of natural pillage? coloured paper wder is instant s What do you noti oaks up water, that your hand bent materials ention to the fac	The skill we will be using this lesson is setting up cup should contain one level teaspoon of instant snow powder has grown and the water has 'absorb' it. Instant snow is a super-absorbent material. dry and that the water is now on the paper use to dry your hands? aper towel stays dry because the water has already	Instant snow; transparent 25 ml plastic cups; coloured paper towels Cups of water; spoons; trays; samples of different materials including kitchen roll, paper towel, cleaning cloth, thin	Absorbant/ absorbency, soaks up,

		Supply small groups of children with cups of water, spoons, trays and samples of different materials: kitchen roll, paper towel, cleaning cloth, thin washing-up sponge, cling film and metal foil. You are going to test all of the different materials to find out which are the most absorbent. Ask children to predict which they think will be most absorbent. Give the children an opportunity to talk to each other about how they could find out which paper towel is best at absorbing water. Ask them to share their ideas. The 'Some Ways of Testing Absorbency' sheet gives some examples of ways to test the absorbency and to record the investigation. Show the children this resource and allow them to decide themselves which method they would like to pursue. When they have decided, arrange the children into a group with others wanting to use the same method. Show the children the resources and ask them to set up their investigation. Share each groups recording methods and results with the class. Which material was the most absorbent? Was it the one you expected? Did each group get the same results? Why do you think cling film and tin foil weren't absorbent?	washing up sponge, cling film and tin foil		
5	L.I. I can investigat e a hypothesi s.	This is a Science lesson. In Science, we study nature and the behaviour of natural things. The skill we will be using this lesson is setting up a test and communicating results. Recap of prior learning: What does waterproof mean? What objects are good to make using metal? why? Big Question - Are bricks absorbent? Meet the children at the door of the classroom and tell them that they are going on an investigative walk. They are going to look at their environment and observe certain things closely, just like scientists do! Walk them around the school, inside and outside, and focus their attention on the different building materials around them. Take photographs, talk about what you see and ask the children to feel the different bricks. Back in the classroom, say Do you think bricks are absorbent? Ask them to explain their answers. Then challenge them to think of their own questions about bricks and absorbency, such as: Are all hard things waterproof? Do things have to be soft to be absorbent? Alternatively, ask them to create their own hypothesis: "All soft things are absorbent" or "Bricks are waterproof because they are hard and solid". Suggest the following hypothesis: "Hard materials cannot absorb water" and see what their reactions are. Ask them to give a 'thumbs up' if they agree and a 'thumbs down' if they don't. Give the children some time to talk to each other about the hypothesis using the Hypothesis Thinking Sheet to help them focus their discussion. Show the children a variety of hard materials (different type of wood, brick, plastics, metals). Arrange the children into groups and challenge them to devise an investigation to test a variety of materials. The more able may have ideas of their own. For example, stand each of the hard materials in a shallow bowl of water and observe, over time, to see if the material soaks up the water. Give the children plain pieces of paper to encourage them to record their observations in their own way and to explore what works best for them. Focus them by asking: If someone comes in after the investigation, and looks at your recording, will they know what happened? And what you found out? Could they go away and redo your investigation, just by reading your notes? How could you make your recording even better, so they could do that? Give them the investigation resource sheet to help them focus their thoughts. Ask the children to come, in their groups, to the front of the class and talk through their investigation. They should describe what they did and what they observed. Remind them of the hypothesis: "Hard materials cannot absorb water" and ask if they proved that to be true or not. Ask: Are you surprised by your findings? What can you learn from this?	Hypothesis Thinking Sheet, a variety of hard materials (different type of wood, including balsa wood, brick, plastics, plaster, clay, metals), shallow bowls of water, timer	material, properties, absorbency, waterproof, strong	
6	LI: I can explore and sort objects according to whether they can change shape.	This is a Science lesson. In Science, we study nature and the behaviour of natural things. The skill we will be using this lesson is observing and asking questions. Recap of prior learning: Why is paper not a suitable material for a spoon? What does rigid mean? Name a waterproof materials? In pairs, children think of examples to complete the following sentence: 'You can change the shape of ... by ...'. Collect children's initial ideas and record them for future reference. Activity: Creating shapes with modelling dough	Modelling dough. Elastic bands; paper; pipe cleaners; modelling clay; plastic bags; plastic cubes; metal forks; wooden spoons; bath	bending twisting stretching and squashing	Display key vocabulary (bend, twist, squash, stretch) to remind children of the different ways they can change the shape of a material.

In the previous activites, several chidren used the words tlexibibe". "tigid" and 'stetcthy's. but not with consistent meaning. In this
In the previous activities, several chidren used the words thexible" "rigid and ststechy', but not with consistent meaning, In this

Introduce or remind children of some of the key vocabulary used to describe how we mould things into shape: 'bending', 'twisting', 'stretching' and 'squashing'. Children look at their work and try to describe the different skills used to create their shapes to a partner, using the key vocabulary. They then annotate their work using 'bending', 'twisting', 'stretching' and 'squashing'

Activity: Changing the shape of different materials

Organise children into groups of no more than four. Give each group the materials listed below. Allow children time to explore the different materials and think about how to change the shape of each one.

Hold up one of the objects, e.g. an elastic band. Can you think of a word that describes how to change the object's shape? Select one word from the children's suggestions, e.g. 'stretch'. Ask randomly selected children to identify another material with the same property. Repeat this, and the previous step, to identify materials that are bendy, twisty or squashy.
Provide the children with a range of objects in picture form and ask them to discuss and sort them into 'Can change shape', 'Can't change shape' or 'Not sure'. Ask other groups how they classified the same material and why
Drag and drop the materials to show if you can change their shape.

